A-UR -52- N '
LA-UR -82-696 é%—a’(;osso-—/

Lon Alsmes NODORD' LADOMSIOYy 5 S09TEN0 By e Unweraty 8! Caltorna for the Unnet Bustes Depeniment 8! Energy vihde: Coniras- %742 EnD M

LA-UR-~82-696

pEe2 011989

TOLE SOFTWARE FOR DEVICE-INDEPENDENT GRAPHICAL INPUT

AUTHOAS Gri h Hamlin
Com er Graphics Group o adlg
- - "

SUBMITTED T0 Graphics Interface 82 Conference, University of Toronto,
Toronto, Canada, May 17. 1982

NSCLAM R

CATHMTAN OF THIS DOCUMENT IS UNLIMITED
NGRS
) sasepwngs ot Mg p7UCie e Pubinhe! 1SCOPNLIOE ™Ma! ™o U B Govesnment reliing 8 RONGACIVE'vE TRYA!). 10 HEOAS 0 .u.lJ- l vop'u.:/o
P pubiohag form 9 this SONIBUIIDS B¢ 10 Blion Bth's 1 B0 30 W UB Goevernmant putpsees
The Los Alsmge Matona’ LEDO/BIP™Y rSRvetis TRAS! 1he BUDIENS' O™y i S B2 W' PO 19' ™AL UNEe' e auspCos M ing U S Depa==¢- ¢'fre';:

L@S A a| ﬁﬁ]@S Los Alamos National Laborator
' Los Alamos,New Mexico 8754

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

SOFTWARE FOR DEVICE-INDEPENDENT GRAPHICAL INPUT
by

Griffith Hamlin
Los Alamos Nationsl Laboratory

ABSTRACT

This paper discusses a» three-level model and a graphics
software structure based oo the wode) that were developed
with the goal of making graphical applications indeperndent
of the input devices. The software structure makes
graphical applications independent of the input devices in a
manner similar to the way the SIGGRAPH CORE proposal makes
tLem independent of the output devices. A second goal was
to provide a convenient means for application programmers to
specify the user-input language for ibeir applications.

The softvare consists of ap input handler and & table-driven
parser. Tae input handler manages & CORE-like event queue,
changing input events into terminal sywbols and ssking their
terpinal sywbols available to the ps ser in s upiform
sanner. It also removes most device dependencies. The
parser is table driven from a Backus-Naur forms (BNF) grammer
that specifies tae user-jnput language. The jower level
grammar rules remove the remaining device dependencaies from
the ipput, and the higher leve]l grammar rules specify legal
sentences ip tue user~input language.

Our implemenZation c¢i this software is on a table-top
minicomputer. Our experience with retrofitting existing
spplications iadicates that we can find a grammar that
removes essentially all the device dependencies from the

application proper.

key words: device-independence; graphice] input; user

interface.

1. INTRODUCTION

The proposed SIGGRAPH CORL standard provi.es »
large measure of device-independent graphical
output [1]. It represents s synthesis of mony
years experience in producing graphics output on
varijous devices. Thc same measure o device-
icdependent graphicsl input, however, does not
exist. The CORE proposs) does eliminate
application program dependence upon specific
physical input devices, provided the physical
devices can be cast jnto ope of aeveral
logical-device classes (pick, button, valuator,
Reyboard, locator). .lowever, logical-device
dependence of the application pragram ‘s aot
addressed. Also, it is hard to aee where some
ioput devices (for example, a voice recogni'ion

unit) fit into the logical=device classification
scheme. Van den Bos has desciabed an
alternative to the logical device model [2}.
This paper presents » wode! that can ancorporate
the Graphics Standards Planning Committee (GSPC)
lopical-device sodel, but adds another laver
between the logical devices and the applacation.

11, MCDEL OF USER INPUT

The literature identifi~s thres different types
of processing of the user's input: lexicel,
syntactic, and semantic (see Fag. 1). In
looking at severs) existing programs at the Los
Alamos Natiopal Laboratory, we observed that
device depend.once is usually introduced into the

Graphics Interface ‘82

spplication at the middle level. At che first
(lovest) level of the model in Fig. 1, ucers
select and use pbysical-input devices. Software
provides them with Jow-level (lexical) feedback.
Cxamples of this are tracking a table or light
pen and echoing of text. This processing is
device dependent but spplicatiop indepcndent,
althougb the device may be asble, through
subroutine calls, to specify one of several
sltevpative types of lexical-level feedbach.
This level of software also changes physical-
deice input into logical-device input, and
corresponds fairly well to a CORE-like input
subsysten.

Device
Applicotion Incepanden !
Semontic
Proceming Applicetion
Dependent
Loglecal
Devlice
Syntoctic
Leve! Dependent
Pracensing Appllcation
<‘ Dependen)
Legicol
Dovice
irpute
'—_"f') I,
Physical
Device
Lexleal
Leval Depe.adunt
Procasting Applicatian
indepsndent
Physical
input User
Deviges feedboch

|

Fig. 1

At tbe second level of the model, the processing
becomes applicatinp dependent. Jn most
applications we atudied, the processing was also
device dependent because the application
required certain (logical) devices to be used.
Here the spplication-dependcnt syntax is checked

to sec if the series of user input forms s legal
pbrase in the user-input lsnguage of the
application. Syntactic: level teedback is given
at this level. This feechs~k may involve
reasopable amounts of application-dependent
processing, but this processiog is not the
primary processing of the application. 1f the
input specification corresponds to s legal
phrase in the user's input lanpuage, this
processing often changes the nput phrase (often
a single parameter of a compapnd) anto a standard
form for use by the rest of the applicataon.

At the third (bighest) level of our input model,
the processing 1s application dependent and 1s
usually logical-device independent. Changing
user input phrases into some standard form in
the maddle level typically removes the device
dependencies in the applications we studied.
Thic third-leve] processing may gather up
several such phrases (parameters) until a
complete sentence (command) is available, and
then perform the processing requested by the
command. Command processing is the primary
processing of the application.

111. SOFTWARE STRUCTURE

According to our model, software for graphical
input should be able to ivolate the device
dependencies in an applacation to, at most, the
middle leve], and perhaps eliminate most device
dependencier even from that level. Fig. 2 shows
the basic software structure we use to try <o
accowplish this. At the bottom of Fig. 2, we
bave 1ndicated a standard CORE-like input
subsvstem that sccepts physical-device input and
converts 1t into logical-devic~ jinput. This
cubsystem corresponds to the lower level of the
wode] apd 1s application i1odependent but device
dependent. In the CORE propousal, the main
application program would access this legical-
device input directly through the event queur.
However, we have added two modules st this
point: the anput handler and a parser. The
input handler is part of the lower leve]
(application independent) processing and the
parser is at the viddle level of the model. be
feel that with proper grammar design the 1nput
handler and the lower level gramwur rules 10 the
parser can be used 'o remove the Jogical-device
dependencaies from the input.

The function of our input handler module 1» to
continvally scan the iopul-device event queur,
chapging inpu' events ipto terminal svmbols (o)
the parser apd makjing them ava)lable to the
parser ip » unifure menner. Our input handler
dodule recognizen some special user-input
action,s that allow users to euable/disalile the
various ioput devices, thus giving them some

Graphics Interface ‘02

Applicotion Logical
Progrem e Device
Independean t
A ' '1l'.d" Applicetion
oy '
Sentonces Dependen
Toble~driven Grommer 1 .
Parser o= Table e
-t
“Stondardized”
Input Logical
Ph-ases Device
Depandent
I 1
Ho::‘:or e 'Ar:uco:’lon'
ndependen
Ik
Logleal
Device .-
Inputs
Physicol
Core-like Dotico
Input Dependent
Subsys tem
Application
*77 independent

Physicol User
input Feedbrck
Devices

|

Fig. 2

measure of dynamaic control over the chcice of
input device. Jt also removes most device
dependencies by passing to “he parser the type
of input rather than the device from wbich the
soput came. For example, it mokes selecting o
menu item with a locator device
indistinguishable froe typing the nawe of the
®epu item oo a keybosrd or pushing a button
associated with the penu item. It alsc askes a
position indicated op s locator device
indistinguishable from that position eatered by
typing the coordinates ou s keyboard. Foley and
Wallace bave discussed simulating one class of
ioput device by anotber clase [3]. Geuerally,
our ipput handler makes such sisulation
invisibly to higher levels of software. Only
the type of input 1s returned, nct the device
from which it came. The iaput bandler may, by
default, enable snd ore a device that (s
normally used for the expected type of imput,
but this is not required.

Somctimes, bowever, the application programmer
may vish to generste different syntactic-level
feedback for jnput from different devices. Our
software discourages this, but allows for it in
order to bandle special carcumstances. For thas
reason an application can, by a request to the
input handler, find out the Jogica) device that
produced each ioput terminal symbol. Use of
this information, of course, introduces device
dependencies at the next bhigher level. To
isclate tbese dependencies as much as possible,
our next level software is a table-driven parser
whose lower level grammar rules are designed
specifically for each spplication to remove the
remaining logical~device dependencies. These
lower leve! rules have the effect of
transforming the input phrase into » standard
forn. The parser’'s semantic interface at this
level provides the syntactic user feedback by
calling spplication-dependent routines. These
grammar rules can, with some effort, distinguish
between different input devices. However, it 1s
just as easy not to do so. We hope this will
epcourage device iad ,endence. With experience
it might be possible to discover a set of
often~uged, lower level input grammar rules and
build them into the input handler.

The higher level grammar rules used by the
parser determine if user input forms legal
statements in the user 1apnt language, and
provide » semsatic level interface to the
applicstion program, passing 1t user input
commands that have been transformed into »
stendard form. Thas coriessponds to the thard
(haghest) level of our smodel.

IV. IMPLEMENTATION

This scftware structure has been implemented in
Fortran on » DEC L51-1) microcomputer. This
places the fi-st two levels of imput processaing
on the microtomputer, isolating al) devace
dependencies to the wicrocomputer ao that the
maip applacation program running on a host
computer is input- and output-device
iudependent. The physical iuput devices include
a keyhoard, & cata tablet, a jovstick, a voice
recognition unit, seversl knobs and mvitches,
apd a thumbwheel cu-sor, which 13 part of the
Tektronix 4014 storage tube output device.
Output devizes include the storage tube and o
high-resolutyun (768 x 1024) bleck-and-white
video displav.

An implementstiion of the proposed CORL input
subsystem was not svailable, s0 our innut
bandler scans the physical devices dicectly,
funneling all ioput ipto » stream of terminel
symbols to the parner. An application program
cap pass to the input handier the physical

QGraphice interface ‘82

layout and entries in a menu on either of the
two locator devices. Tke input handler will
then make indiscinguishable to the perser
keyboard entries of the menu items and locstor
hits on the menu items. Special Reyboard keys
are recognized by the input bandler and allow
the user to enable/disable the thumbwheel cursor
and display of tbe menu on the storage tube
acreen. Althcugh the spplicition progras can
specify that it wants ome device or the other
enabled for the next input, the user is pot
sequired to use it. The only “ay the
application progrsmmer can absclutely require
use of a certain device is to request the input
handler to provide device information in the
form of spe~1fic device-dependent terminal
symbols and to specify these device-dependent
symbols in the grammar uzed by the parser.
Then, if tbe user uses anything but the required
device, it will not parse and the application
program's error rout nes will be invoked.
Although this type of use of the nystem is
possible, the system discourages this use by
making it barder tr require a specific devace
than it it t~ allow use of any device. This
bebhavior it opposite to the way many existing
systems work.

The parser used ip this implementation is LANG-
PAK [4], » table-driven parser in fairly wide
use. It silows the gpplication programmer to
enter 2 grammar, along with semantic operations
to be invoked upon matching the various grammar
rules. Sample input sequences can then t.
interactively entered and checked by the parser,
so that the application programmers can check
their grammar. The semaztic interface between
LANG-PAN and the applicstion prugram was changed
io this implementatinn so that any Fortran
statement or statements can be placed as
sepantic specifications apywhere in the grammar.
These statemeni; will be executed when the
associsted grammar rule, or partial rule, is
matched in the user joput string. These
stalements are typically CALL statements to the
various application program subroutines that
perforw the actions associated with various user
input.

V. USES

For interfaciog to existing Laboratory
spplications, we bave built on top of the
graphical inpu? software a small LS1-11 resident
program that commuricates with the maip tive-
sharing network at the Laboratory. This systenw
provides a user-tasilorable fropt-end to other
existing applications that rur on the time-
sharing systes. User ipput from the various
grophical and text input devices is mapped by
the parser and sasociated semantic routines onto

the input forsay required by existing Laborstory
spplications. Difierent grammar and semantic
routines are used for different existing
spplicotions. The first appiication, MAPPER, 1is
~u existing Laboratory spplication for producing
presentstiop slides {5). MAPPER reads a {1le of
commands that specify the slide, including x,y
coordinates of grephics entities s.ch as boxes,
circles, snd lines. The commor mode of using
MAPPER is to use a text editor to construct a
command file and then execute MAPPER with this
file as input. Wwe observed that the most time-
consuming aspect of this; use of MAPPER 1s
correctly entering the x,y coordinates of the
various graphical eniaties. Iteration is
pnecessary because we are forced to use a
nonfraphical keyhoard to specafy graphical
objects. A grasmar was wratten for the LSI-11
re.adent {ront-end program that aicepted anpu’
from 11) devices and converted it to the MAPPER
forma.. A menu was laid out provading an item
for each MAPPER command with this menu, users
can trace existing sketches of slides or create
pev sketches on a data tablet. No modification
to any program running on the time-sharing
system was required. Using this front-end on
several test slides, we found that the lime
required to generate a slide was reduced
considerably because of the reduced number cf
tries needed to position the graphics objects
correctly.

On. problem with this ussge is providing
ronvenient syntact:c-1oput language phrases and
feedback on all devices without modifying the
spplication on the host computer. We prefer to
be able to specify graphical objects differently
on different devices. For example, MAPFEK
requires & center and a radius to specify &
circle. 1f we use the tablet for the center
point, we must change to a valuator device or
simulate a valuator with the tablet to give the
radius. It would have teen straiphtforward to
use the tablet to enter a center point ano @
point on the carcle, but the exastang
spplication was not written that way. Oup
solution was tc perform syntactic processing in
our microcomputer on twu tablet points, a center
and a puint on the crrcle, to calculate a radius
that was then passed to MAFPERK. This
wodifaication of the user-anput language worked
successfully, but it introduced some devate
dependencies into the Jower Jevels of the
input-lsnguage graamar and introduced some
device-dependent processing of the tablet anput.

Tae necond application to use this system wax a
seall two-dimensiopal interactaive drawang
program called DRAWIT. DRAWIT allowy the
def:nition of sub-cbjects and instanie of these
sub-objects to be placed at various pesitions on
the picture, It allows modification or deletivn

Graphice interface ‘82

of thcse sub-objects ax entities and also allows
draving and deletiop of individusl lines sund
text in the picture. The user-input lsnguage
vas purposely kept quite simple to focilitate
use on different logical-input devices. Each
commapd consists of a logical button (to specify
the command), optionally followed by a location.
For example, the lczation following wove or draw
commands specifies vhere to move or draw to.

The only exception is the command to place text
in the picture, which is followed by » text
string. This syntax was wvell suited to our
Tektronix thumbwheel cursor, which allows us to
couple a single keybosrd cbaracter with the
cursor location. Also, we could essily simulate
this syntax usi g only the keyboard, using only
the cursor, or using only the tablet by
designating part of the tablet as o menu of
commands. Our input handler alone was sble to
remove 8l] device dependencies from higher
levels of software in this case, which allowed
the user to choose smong all possible ways of
using our three physical devices to specify two
input items. Our parser in this case
essentislly performed the identity function.

With use of DRAWIT, we obnerved a user
preference for the tablet device. We also
observed that it was annoying to be forced to
alternately move the tablet stylus between the
locater ares and menu area of the tablet,
especially on the draw command, which was aften
repeated pany times in succession. Therefore,
we modified DRAWIT slightiy to improve its use
with the tablet by alloving the command to be
omitted if it was the sawe as the previous
comeand. Ever though the impetus for this
wodification came from s particular device,
DRAWIT is still input-device independent in the
sense that it processes input from all devices
in the same manner. 1Indeed, it does not know
which device produced its input.

V1. CONCLUSIONS

This software structure has been used to
sucressfully retrofit existing applications anJ
remove device dependencies. This structure
allows existing applications to make use of
newly available input devices. The hardest
problem has be~n providing good syntactic level
phrases and feedback ou al] devices without
@0difying the existing applacations.

Wit} this system, ve tend to continue using the
current input device (to preserve tactile
coniinuity) until we really need to switch to
apother one. This use is made possible by tke
user beinog able to select/dearlect ipput devices
without the spplication pregram's iptervention.
However, an applacation may require first an

input from one device class and then an input
from snother device class. We can cimulate ope
class of device with another. We took this
spproach in both applications described above.
This system was successfully able to hide the
sisulstion from the application, but it was not
able to do so and still make optimal use of «ll
the devices from a buman engineering viewpoint.
These difficulties were remedied in the two test
applications, either by changing the
applacation's user-input lacguage ur by
introducing some device-dependent processing of
some user input.

The table-driven parser has isolated the input
language specifications and has made
experimenting with user input languages much
easier.

We conclude from our limited uge of this
software that it can successfully eliminate
application dependence upon specific logical-
input devices. However, the software can not
guarantee successful buman epgineering for all
devices.

REFERENCES

1. "Status Report of the Graphics Standards
Planning Committee,” Computer Craphics
(13,3), August 1979,

2. Jan Van den Bos, "Definition and Use of
Higher Level Graphics Input Tools,” Computer
Grapbics (12,3), August 1978, pp. 38-42.

3. J. D. Foley, and V. L. Wallace, "The Art of
Natural Graphic Man-Machine Conversation,”
Proceedings of the 1EEE (e2,4), April 1974,
pp. 462-471.

4, L. E. Heindel, and Jerry Robertce, LANG-PAK -
An Interactive Language Design Systen,
Americapn Elsevier, New York, 1975,

5. D. B Dah), "MAPPER User Manual.' Los Alamos
Frogram Library Wrate-up JSAJ (1974}

Graphice Intertace ‘82

